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Movement has important consequences for individual and population-level processes, but methods are only starting to become avail-
able for quantifying fine-scale movement paths of smaller animals. New techniques for inferring behavioral states and their relation to
social and environmental factors provide a powerful way to test the influence of such factors on individuals. One such technique that
has recently gained popularity is the use of hidden Markov models, which link time series of movement variables and the underlying
behavioral states of individuals. We used hidden Markov models to evaluate behavioral states and their relation to environmental,
seasonal, and social factors in the cooperatively breeding red-cockaded woodpecker (Picoides borealis) while accounting for indi-
vidual heterogeneity with discrete random effects. We identified 2 distinct behavioral states, resting and foraging, which were related
to covariates in our models. Using this approach, we concluded that woodpecker step lengths tended to be longest in winter, larger
groups of woodpeckers tended to spend less time foraging and more time resting when compared with smaller groups, and woodpeck-
ers foraged more and rested less when in higher-quality habitat. Our results demonstrate the impact that social and environmental
factors can have on movement in a social species and, thus, reinforce the importance of including these factors in animal movement
studies. The extensions of basic hidden Markov models considered here may prove valuable in forthcoming studies that involve high-
resolution tracking to understand behavior of birds and other small animals.
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INTRODUCTION whales (Balaena mysticetus) (Pomerleau et al. 2011); bedding, feeding,
and relocating states in woodland caribou (Rangifer larandus) (Franke
et al. 2004); and 3 types of diving states in American mink (Neovison
vison) (Bagniewska et al. 2013). Analyzing the behavioral states of
individuals can lead to insights regarding resource and space use
(Forester et al. 2007; Fryxell et al. 2008) and can be scaled up to
examine population processes (Morales et al. 2010). Understanding
these features in endangered and sensitive species may be particu-
larly useful for management and conservation planning (Lusseau
2003; Pomerleau et al. 2011; Anadon et al. 2012).

Advances in tracking techniques, such as radio and satellite
telemetry, have allowed researchers to record animal movement
paths at high spatial (e.g., <1 m) and temporal resolutions (e.g.,
Address correspondence to A.E. McKellar, who is now at Environment L min). Linking these data to social and environmental variables is
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Animal movement is a process involving internal cues and external
factors that interact to influence decisions and behaviors (Nathan
et al. 2008). Despite its importance in ecology and evolution, and
considerable interest in the study of animal movement in recent
decades, research is only presently beginning to characterize individ-
ual movements in a quantitative way (Holyoak et al. 2008). Recent
work on animal movement has categorized movement paths into
states that link to underlying individual motivations and behaviors;
examples include encamped and exploratory states in elk (Cerous ela-
phus) (Morales et al. 2004); transient and resident states in bowhead
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Langrock et al. 2014). Statistical models for dissecting movement
patterns into different underlying states have been formulated and
fitted primarily in a discrete-time framework, typically using either
hidden Markov models (HMMs; Morales et al. 2004; Holzmann
et al. 2006; Patterson et al. 2009; Langrock et al. 2012) or more
general state-space models (SSMs; Jonsen et al. 2005; Patterson
et al. 2008; Schick et al. 2008; Jonsen et al. 2013), although we
note that a similar approach has also been considered in a con-
tinuous-time framework (Blackwell 2003). HMMs and SSMs are
doubly stochastic processes and have precisely the same depen-
dence structure, with an observed time series such that any observa-
tion depends only on the current value of an underlying Markov
state (or system) process. Some authors in fact do not distinguish
between HMMs and SSMs (e.g., Cappé et al. 2005). However, the
label HMM is usually used to indicate a model with a finite num-
ber of possible states, whereas in SSMs, the underlying state pro-
cess typically takes continuous values and hence involves an infinite
number of states. In the literature on movement modeling via state-
switching processes, SSM approaches typically include both the
continuous movement metrics and the discrete behavioral states in
the hidden component of the model, using the link to the observa-
tions to describe potential measurement error (e.g., Patterson et al.
2008). In contrast, in HMM approaches, the measurement error is
typically assumed to be negligible, so that the hidden component
ol the model only involves the behavioral states, with the observed
process giving the movement metrics, typically step lengths and
turning angles (Langrock et al. 2012). SSMs of the described type
usually require the use of the Bayesian inference paradigm—with
all its advantages and disadvantages—whereas HMMs can easily
be fitted also in a frequentist framework using the corresponding
powerful machinery.

Assuming negligible measurement error and adopting a likeli-
hood-based frequentist estimation approach, we applied HMMs to
a large data set of movements of foraging red-cockaded woodpeck-
ers at Eglin Air Force Base (AFB), Florida, USA, with the goal of
identifying behavioral states and their relation to the social (group
size) and environmental context (season, habitat quality) within
which they occurred. Red-cockaded woodpeckers breed coopera-
tively and occupy year-round territories centered on a cluster of
nest and roost trees (Lennartz et al. 1987). Much work has been
devoted to understanding the habitat requirements of this spe-
cies. In general, higher woodpecker fitness is associated with open,
park-like mature pine woodlands and savannahs characterized by
open understory with herbaceous growth, large pines, low densi-
ties of small pines, and a sparse hardwood midstory (Hardesty et al.
1997; James et al. 1997, 2001; Walters et al. 2002; McKellar et al.
2014). Red-cockaded woodpeckers at Eglin AFB have been found
to select forest stands with more large pines and fewer small pines
when compared with random stands, and the strength of resource
selection varied with group size (McKellar et al. 2013). Thus, we
predicted that the woodpeckers would demonstrate diflerential
behavioral states in relation to these factors.

Our methods extend standard HMM-type movement models in
several ways. First, we consider zero-inflated step length distribu-
tions, which was valuable for our analysis due to the high temporal
resolution of our data set, with observations made every minute
and woodpeckers often remaining in the same foraging location for
several consecutive minutes. Second, we include seasonal eflects in
our models to account for and to examine potential differences in
the step length distributions across seasons. Movements by foraging
woodpeckers are expected to vary seasonally as invertebrate prey

149

are more scarce and/or more difficult to access in winter, whereas
resources are more abundant in spring and summer (Skorupa and
McFarlane 1976; Bradshaw 1990; McKellar et al. 2013). Third, we
allow for the possibility that the movement dynamics of woodpecker
groups may vary across territories of different types by including
random eflects in our models. Here, we avoid the computational
problems that have plagued previous attempts to include random
effects in HMMs by incorporating discrete-valued random eflects,
following Maruotti and Rydén (2009). Compared to conventional
strategies for incorporating random effects in HMMs (e.g., Altman
2007), this leads to a substantially decreased computing time and
also avoids potentially unrealistic assumptions about the shape of
the random effects distribution (Aitkin 1996). Discrete-valued ran-
dom eflects have been implemented in capture-recapture studies
(Pledger and Schwarz 2002), but to the best of our knowledge, they
have not yet been applied in animal movement analyses. Finally,
though previous work with HMMs has included multiple covariates
(e.g, Schliche-Diecks et al. 2012), our study is unique in that we
explicitly assess both social (group size) and environmental factors
that may influence woodpecker movement behaviors.

MATERIALS AND METHODS
Field methods

Red-cockaded woodpeckers are nonmigratory and occupy year-
round territories as solitary males, pairs, or cooperatively breed-
ing groups (Walters et al. 1988, 1992; Jackson 1994). Pairs and
groups typically forage together on their large (1.e., 50-100 ha)
territories during the day, departing from their roosting cavities
after sunrise and returning to them prior to sunset (Lennartz et al.
1987). After fledging, young woodpeckers that survive remain
with the family group until they either disperse or become help-
ers. Dispersal is thought to peak several weeks after fledging (July
or August), with a second peak occurring just prior to the follow-
ing breeding season (March or April; Kesler et al. 2010; Kesler
and Walters 2012). Breeding pairs can be assisted by up to 5 help-
ers, which are typically males fledged during previous breeding
seasons (Walters et al. 1988).

We followed groups of red-cockaded woodpeckers at Eglin AFB
(30°29°N, 86°32'W), Florida, USA, between February 2007 and
November 2008. We performed observation sessions (n = 440),
defined as the set of location points for a given woodpecker group
on a given day, at 97 territories (1-8 observation sessions per terri-
tory). Birds were followed during each session by a single observer
outfitted with a global positioning system (GPS; Garmin eTrex
Legend, Garmin Ltd, Olathe, KS), set to automatically record
the geographic coordinates of its location once each minute. Red-
cockaded woodpecker habitats on the study site were composed of
open stands of trees with substantial sky exposure, so we anticipate
that the accuracy of GPSs was <3 m error (95% circular eflort
probability; Garmin Ltd 2005). This error was judged to be small
in comparison to woodpecker step lengths (see Results). Observers
arrived at territory centers at or before sunrise and before birds
emerged [rom roost cavities. After woodpeckers emerged, observers
recorded the number of birds in each group and traveled on foot
with woodpecker groups for approximately 1h (February 2007 to

July 2007) or 2h (September 2007 to November 2008) while birds

foraged and moved throughout territories. Because observations
were recorded during all months, except December, group sizes
included single males, pairs, pairs with helpers, and groups with
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fledglings not yet dispersed, and ranged from [ to 9 individuals. We
attempted to observe each group at least 3 times each year.

During observation sessions, woodpeckers moved from tree to
tree, and although group members were not always on the same
tree at the same time, birds remained in the same general areas
and regularly made contact calls. Observers traveled with groups
without difliculty and usually remained <30 m from a group mem-
ber. Observers spent time near each woodpecker as they visually
observed and recorded the combination of colored leg bands and
recorded behavior observations, and thus, tracking locations were
recorded very close to the birds and within the same forest stand
in which woodpecker groups were located (mean area of forest
stands at Eglin was 0.0427 ha). The population has been monitored
using these methods for many years and there have been no indi-
cations that foraging behavior was affected by observer presence.
Observers stood still while birds were at rest or when they spent
periods of time foraging at a single site.

We removed locations recorded within 50 m of the territory cen-
ter; defined as the geographic mean of coordinates for nesting and
roosting trees, to reduce the influence of preforaging social inter-
actions that occurred at sunrise and near roost cavities. We trun-
cated observation sessions when birds made sudden long-distance
movements and observers could not follow them, when inclem-
ent weather prevented the visual observations of foraging birds,
or when GPS units failed to estimate a location and a period of
=1 min elapsed between recorded locations. We removed data [rom
9 sessions that included <15 observations. In total, our data set con-
sisted of 35 304 locations for the 440 observation sessions.

We used ArcMap version 10.0 (ESRI, Redlands, CA) to calcu-
late step lengths and turning angles [or each observed location. We
used forest stand geodatabases (spatial and quantitative stand rep-
resentations), provided by Eglin AFB, to determine the density of
pine and hardwood trees at each observed GPS location in 2 size
classes: 10.2-25.4cm diameter at breast height (dbh) and >25.4cm
dbh. Previous work showed that hardwood densities did not allect
resource selection of red-cockaded woodpeckers at Eglin AFB, but
that selection was oriented to these 2 size classes of pines, with
woodpeckers selecting stands with higher densities of large pines
(=25.4cm dbh) and lower densities of small pines (10.2-25.4cm
dbh) (McKellar et al. 2013).

Behavior observations

Between January 2008 and November 2008, focal samples of
behavior (Altmann 1974) were conducted for up to 4 woodpeck-
ers in each group during sessions when observers were traveling
with the birds. During focal sampling periods, observers recorded
and classified behavioral interactions among individuals for use in
a separate study. Focal sampling began immediately after colored
leg bands had been inspected and all group members were identi-
fied. Fach focal sample lasted 10min (based on a stopwatch), and
subsequent focal samples began 5min after the conclusion of the
previous sample. Initial and subsequent focal samples were initiated
only when birds were actively foraging or moving. Thus, by pairing
focal sampling time frames with location data from GPS units, we
derived a set of locations during which birds were known to be for-
aging (r = 1048 focal samples during 326 sessions).

Movement analyses

We consider 2-state HMMs for analyzing the 440 observed multiple
bivariate time series ol step lengths and turning angles, associated
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with the different territories and different sessions within territories.
At any time, each observed group is assumed to move according to
a correlated random walk, wherein turning angles are generated
by a von Mises distribution—typically with mass centered around
zero such that there is persistence in the movement direction (see
Results; Figure 1}—and step lengths are drawn from a zero-inflated
gamma distribution. Including a point mass (on zero) in the step
length distribution s necessary in the given application because,
due to the groups sometimes remaining stationary for some time,
there is a considerable proportion of zero step lengths in the obser-
vations. In each session, an underlying, nonobservable Markov
chain is assumed to determine the time-varying (behavioral) states
of the group and the variation of the parameters of the von Mises
and of the zero-inflated gamma distribution across these states. For
example, the average step length will be longer in some states than
in others. We further assume the parameters of the zero-inflated
gamma distribution to vary across seasons. We consider the case
of 2 states, which we subsequently reference as a resting state (state
1) and a foraging state (state 2), although such interpretations need
to be made cautiously, because the nominal HMM states need not
necessarily correspond to biologically meaningful states. In total, 2
sets of parameters are estimated for the turning angle distribution
{one for each state), and 8 sets of parameters are estimated for the
step length distribution (2 sets, corresponding to 2 states, in each
ol 4 seasons). The Markov chain generating the state sequence is
assumed to be nonhomogeneous, with transition probability matrix
at ime { given by

(1)

I (e,s5,t) :{Y“(C’s’” Ytl(‘:,S,t}],

Y'II(":!-;':!‘} 722(525:5)

where ¥,(¢,5,0) is the territory-specific (as indicated by ¢,6 =1,...,97)
and session-specific (as indicated by 5,5 =1,....c,, where ¢, €{l,...,8})
conditional probability of a group of woodpeckers being in state j
in the time interval (£,f + 1), given it is in state { during the interval
(t —Lt). To investigate the influence of the group size and of envi-
ronmental covariates, the state transition probabilities are assumed
to be functions of 5 covariates, denoted by ¥, (number of birds in
group observed in territory ¢ and session ), x, ., (PTPA_4_10—
pine stems/ha 10.2-25.4em dbh), x,,,, (PTPA_10—pine stems/
ha > 254em dbh), x, ., (HTPA_4_10—hardwood stems/ha
10.2-25.4cm dbh), and x,,,, (HTPA_10—hardwood stems/ha >
25.4cm dbh), as follows:

logit(y,(c,s,t)) = Bi,n + B,-’]x les T Ba‘,z"‘z,c,;,x @)
+ﬁ:‘,3"‘3,¢,u + B:‘,»r’-' best T ﬁi,ix.'i,c,:,i s

for i=12. For the single bivariate time series of step lengths and
turning angles observed for the group in territory ¢ and session §,
given by zgf’”,...,z.[_f."j], the likelthood is a standard HMM likelihood:

T(J

L(c,s)=8P, (! )H T(e,s,1)P, (21, (3)

where the row vector § is the Markov chain initial state distribu-
tion, which we estimate, ]=(l,l)I and

(6,7} 0
P(zgr,”): ("ﬁ,ﬂ"&éz‘ } ;—2 ) (ZE"”)}, {4'}

with £ _.(z{*”) denoting the conditional density of the observation
2/ given the current behavioral state, 7, and the season in which
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State-specific, and in the case of step lengths also season-specific, conditional distributions of the step lengths (top 4 rows) and of the turning angles
(bottom row). For the step lengths, Pr(0) is the estimated point mass on zero, the vertical dashed line indicates the median of the distribution, and the
vertical dotted lines indicate the 5% and the 95% quantiles of the distribution. State | corresponds to a resting state, and state 2 corresponds to a

foraging state.

the session took place (seas €{1.2,3,4}). Note that this conditional
density simply is the product of the state-dependent density of the
von Mises distribution and the state- and season-dependent density
of the zero-inflated gamma distribution. The likelihood of interest
is the product of the likelihoods corresponding to the different ter-

ritories and sessions:
L=T]T1 x5, (5)

Note that the matrix product expression for the likelihood of a sin-
gle series is a consequence of applying a recursive scheme called
the forward algorithm, which is an extremely powerful HMM tool
and one of the main reasons for the popularity of these models (see
Zucchini and MacDonald 2009 for a more detailed description). In
particular, it allows for a numerical maximization of the likelihood
above, which we conducted using R (R Core Team 2012). We con-
sidered several sets of initial values in the numerical maximization
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in order to increase the chances of finding the global maximum of
the likelihood in Equation 5. Further, we fitted all nested models
that included only a subset of the 5 covariates and used the Akaike
information criterion (AIC) to select among the competing mod-
els (Burnham and Anderson 2002). Note that we also considered a
model that included seasonal effects in the state-switching process,
but found this to be highly inferior, in terms of the AIC, to a model
with seasonality only in the step length distributions.

We further investigated potential individual heterogeneity not
captured by the covariates, by including a territory-specific random
effect in the model for the state transition probabilities, replacing
B., in Equation 2 by €. Here €”...."", with £“=(g,)") , are
bivariate random variables taking on different values for the dif-
ferent territories. Usually, such random eflects are assumed to be
Gaussian. However, in the frequentist HMM framework, this typi-
cally leads to computational problems because each continuous-
valued random eflect adds an integral to the likelihood, quickly
rendering a numerical maximization infeasible, especially for data
sets as large as the one we consider (cf. Langrock et al. 2012). Thus,
we implemented the alternative approach suggested by Maruotti
and Rydén (2009), assuming a discrete support of the &, so that

K
£ =(u,,u,,) with probability m, for k=1,....,K with Etk=l,
k=1

The value of K, giving the number of possible values of €,
is chosen based on the AIC. The likelihood of the correspond-
ing model, which 15 a mixed HMM for multiple time series (in the
terminology introduced by Altman 2007; see also Schliehe-Diecks
etal. 2012), has the following form:

'y

FETI2IT

c k=1 5

Lt{":s‘f)np (b)

where L, (c,s) is defined analogously as in Equation 5 but with the
Bio in the predictor for y(e,s,t) replaced by u, , (for i =1,2).

Note that we model the (two) random eflects using a bivariate
distribution, rather than considering 2 independent univariate dis-
tributions. The motivation for this is the intuitive idea that each
possible outcome of the bivariate distribution and associated transi-
tion probability matrix corresponds to a particular territory type (of
which there are finitely many), and the estimated probabilities of
the different outcomes correspond to the proportion of the associ-
ated type of territory in the sample. A random effects model with
2 independent univariate distributions would be much harder to
interpret and would also be computationally more challenging to fit
as it would involve 2 summations in the likelihood (rather than just
one). Code for the HMM analysis is provided in the Supplementary
Material.

Behavior and movement

Behavior data from focal samples were not recorded through-
out each tracking session, so they could not be directly related to
HMM-based analyses of movement. However, behavior and move-
ment data did overlap for portions of tracking sessions, so we used
the data to conduct a post hoc analysis of movement states iden-
tified in the HMM analysis to test whether the predicted move-
ment states differed when focal sampling took place (i.e., birds were
known to be foraging) and when focal sampling did not take place.
We identified tracking locations recorded on GPS units during
each of the 10-min focal samples, and for each, we identified the
most likely state under the fitted model using the Viterbi algorithm
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(Zuechini and MacDonald 2009). We also identified the most likely
state for all other GPS locations recorded when focal sampling did
not take place, but during the same sessions in which focal observa-
tions were recorded. We assigned a value of 1 to points classified by
the fitted HMM in the resting state and a value of 2 to points clas-
sified in the foraging state. We used generalized linear mixed mod-
els in the R lme4 (Bates et al. 2014) library to compare the mean
of state values predicted by the fitted model for all points observed
during focal sampling and when birds were actively foraging, with
the mean of state values for locations outside of focal sampling,
and when birds were resting for at least some of the time. Mean
state values for GPS locations were fitted as the response variable
with focal sampling (ves or no) as the fixed effect and group identity
as a random effect.

RESULTS

Based on the AIC, the model including all 5 covariates (group size,
pine stems/ha 10.2-25.4cm dbh, pine stems/ha = 25.4cm dbh,
hardwood stems/ha 10.2-25.4cm dbh, and hardwood stems/
ha > 25.4cm dbh) was selected over all 32 nested models that
include only a subset of the covariates in the predictor. In terms
of the likelihood-ratio statistics, HTPA_10 was the most significant
covariate allecting the state transition probabilities (P = 0.002),
and PTPA_4 10 was the least significant (P = 0.091) among the
5 covariates considered. Assuming the step length distribution
to depend not only on the state but also on the season led to a
lower AIC compared with the more basic nonseasonal model
{AAIC=117.5), stressing the need to account for seasonal effects.
However, in view of the very large sample size, the magnitude of
this seasonal effect is small. Including territory-specific random
effects also led to substantially increased wvalues of the log likeli-
hood, with the AIC indicating & = 4 as the optimal number of pos-
sible values to be taken on by the random ellect (Table 1).

Figure 1 displays the estimated state-specific, and in the case of
step lengths also season-specific, conditional distributions estimated
for the step lengths and turning angles. The typical pattern of one
state is exemplified with generally smaller step lengths (median
5.3-6 m/min across seasons) and the other with larger step lengths
(median 21.5-26.3 m/min across seasons). Previous research has
referred to these states as encamped and exploratory, respectively
(Morales et al. 2004; Fryxell et al. 2008) because of the generally
greater movement activity of the exploratory state and the more

Table 1

Log-likelihood and AIC values obtained for the mixed HMMs
with different possible numbers (K) of values of the territory-
specific random effect variable and for basic models ( K =1)
without covariates and/ or without seasonality

Iy Log-likelihood — AIC AAIC
| no seasonality, no covariates) —182252.5 364530.9 192.1
| (seasonality, no covariates) —182173.6 364409.1 70.3
| (no seasonality, all 5 covariates) — —182230.4 364506.8 168
| (seasonality, all 5 covariates) —182153.6 364389.3 50L5
2 —182130.4 364348.7 9.9
3 —182126.1 364346.2 74
: —182119.4 364338.8 0
5 —182119.4 364344.8 &

The models with & > 1 include all 5 covariates and seasonal effects. Based
on the AIC values, the best model is one with seasonality and all 5 covariates
and with & = 4 as the number of possible values of the random effect.



MeKellar et al. » Woodpecker behavioral states

sedentary nature of the encamped state. The behaviors of foraging
woodpeckers on territories are relatively well documented, however,
so based on this understanding, we use the terms resting and forag-
ing hereinalter in association with the movement states. The forag-
ing state involves a turning angle distribution with mass centered on
zero and a small variance, indicating a relatively high directional
persistence. In contrast, in the resting state, there are much more
frequent reversals. Though diflerences within states among seasons
were small in comparison to differences between states, the uncon-
ditional median step lengths (averaged over the states according to
the equilibrium probabilities—see below) were largest in winter, fol-
lowed by spring, summer, and fall.

Figure 2 displays the equilibrium probabilities of occupying
the resting and the foraging state, respectively, as functions of the
standardized covariates (separately for each of the covariates, in
each case fixing the value of the other covariates at their respec-
tive means). These equilibrium probabilities are indicators for how
likely it is to find a group of woodpeckers within a particular state
under different conditions (Patterson et al. 2009). The figure also
gives the expected state dwell times, that is, the expected durations
of stays in the 2 different states, in equilibrium. Note that values
for the resting state were always higher than those for the forag-
ing state, indicating that for all the considered covariate combina-
tions, a higher proportion of time was spent in the resting state
and the expected dwell times for the resting state thus were longer,
according to the fitted model. The [ollowing trends can be seen:
1) as group size increased, woodpeckers were more likely to be rest-
ing and less likely to be foraging, with the expected dwell time in
the resting state increasing and the expected dwell time in the for-
aging state decreasing; 2) as the number of small pine stems/ha
(10.2-25.4 em dbh) increased, woodpeckers remained in both states
for longer periods of time (i.e., fewer transitions between states);
3) as the number of large pine stems/ha (=25.4cm dbh) increased,
woodpeckers were less likely to be resting and more likely to be
foraging, due to an increase in the mean duration of stays in the
foraging state; 4) as the number of small hardwood stems/ha
(10.2-25.4cm dbh) increased, woodpeckers remained in both states
for shorter periods of time (i.e., more transitions between states);
and 5) as the number of large hardwood stems/ha (>25.4 cm dbh)
increased, woodpeckers were more likely to be resting and less
likely to be foraging, primarily due to an increase in the duration of
stays in the resting state.

As an example, Figure 3 displays 3 sample tracks of observed
locations for 3 different groups of woodpeckers as they travel across
the landscape. The most likely state for each observation based on
the fitted model is shown, as is the relative PTPA_10 level (num-
ber of pine stems/ha > 25.4cm dbh) of each forest stand used
by the woodpeckers. Resting states were found more often in low
PTPA_10 stands.

The 4 different levels of the discrete random effects correspond
to different state-switching dynamics. Again, fixing the value of all
covariates at their respective means, the vectors of diagonal entries
of the 4 estimated transition probability matrices, associated with
the 4 different levels of the random eflects, are (0.82, 0.82) (for
k=1 with proportion T,=0.49 in the mixture; ie., about hall
of the observed groups have this state-switching pattern), (0.86,
0.74) (k=2, with ©,=0.38), (0.90, 0.82) (k=3, with 7, =0.10),
and (0.73, 0.48) (k=4, with ©, =0.03). These patterns indicate
different amounts of time spent in the different states (e.g., with
k=1 leading to about 51% of the time spent in the resting state,
in contrast to about 64% of the time spent in the resting state for
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k=2) and also different levels of persistence in the states (with
k=4 involving the highest and k=3 involving the smallest rate of
switches). The considerable variation observed across the 4 differ-
ent levels illustrates the need to adequately account for heterogene-
ity in the data analyzed here. Not only does this reduce the risk
of introducing bias in the other parameters of the model but also
gives a means to quantily variability across woodpecker territories.

On a technical note, the computing times ranged from 0.2h
(model without random eflects, seasonal eflects, and covariates; 13
parameters) to 5h (model without random effects, but including
seasonal effects and all 5 covariates; 41 parameters) to 31 h (model
with random effects, &= 4, and including seasonal eflects and all
5 covariates; 50 parameters), on an 17 CPU, at 3.4 GHz and with
8 GB RAM. For the very high number of observations considered
(m =135 304) and the relative complexity of the models, the compu-
tational effort is relatively low.

The mean value for movement states associated with tracking
locations collected during focal sampling was higher than the mean
value for movement states associated with points collected outside
focal sampling periods (F) 53, = 67.9, P < 0.0001), where higher val-
ues are associated with a foraging state based on the fitted model.
Focal sampling was only conducted when birds were actively forag-
ing, whereas at least some of the other locations were associated
with resting behaviors. Thus, post hoc results indicated that our
designations of foraging and resting aligned with the behaviors of
the same name.

DISCUSSION

lonsidering HMMs incorporating multiple covariates, seasonal
effects, and random effects, we described red-cockaded woodpecker
behavioral states and their relation to environmental and social
factors. We found that a model including seasonality, woodpecker
group size, and 4 environmental covariates, in addition to a discrete
random eflect for individual territories, had substantially more sup-
port than the nested simpler models (Table 1). Our results revealed
insights into the potential underlying motivation and behavior of a
social species under different contexts while at the same time dem-
onstrating the flexibility and utility of HMMs for the analysis of
high-resolution animal tracking data.

We identified 2 distinct behavioral states of woodpecker groups,
which we termed resting and foraging. The resting state was gen-
erally associated with shorter step lengths and higher variance in
turning angles in comparison to the foraging state. Previous stud-
ies have often referred to these states as “encamped” and “explor-
atory” (Morales et al. 2004; Fryxell et al. 2008), respectively, but we
feel that this terminology is inappropriate for describing the behav-
ior of red-cockaded woodpeckers. Reasons for this difference can
be explained by differing spatal and temporal scales ol the data
sets and by the ecology of the species at hand. Much previous work
has focused on wide-ranging movements of large animals outfitted
with GPSs, which provide hourly or daily observations on a move-
ment scale of hundreds of meters to kilometers (Franke et al. 2004,
Morales et al. 2004; Forester et al. 2007; Fryxell et al. 2008). Our
data set had a very high temporal resolution (1 min), movements
were on the scale of meters, and very long-distance movements
were excluded (see Materials and Methods). Red-cockaded wood-
pecker habitat at Eglin AFB is characterized by open pine savan-
nah, and birds can travel meters or tens of meters from tree to tree
while foraging and often move quickly as a group (Hardesty et al.
1997). Thus, longer and more directed paths in our data set likely
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Left column: Equilibrium probabilities of occupying the different behavioral states (solid line: resting; dashed line: foraging), as functions of the covariates.

Right column: expected state dwell times in minutes in equilibrium. For each covariate, the corresponding function was obtained by fixing the other covariates

and also the random effect at their mean values,

correspond to foraging movements in this species. Red-cockaded
woodpeckers also display long periods of resting or quiescence,
which would be reflected by the smaller step lengths in the rest-
ing state. [t should be noted, however, that long periods of time

can also be spent foraging at a single site, for instance, a dying tree
with abundant prey, which would not accurately be categorized as
foraging according to our models. Nonetheless, the foraging behav-
ior state predicted by the fitted model was more represented during
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Figure 3
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Sample tracks taken by 3 groups of woodpeckers. Left panel shows the movements of a group of 5 woodpeckers in winter above and the movements of a
group of 3 woodpeckers in fall below. Right panel shows the movements of a group of 7 woodpeckers in fall. Triangles denote the resting state, and circles
denote the foraging state. Shading indicates the relative values of large pine stem density (>25.4cm dbh) of the forest stands (darker = higher values).

focal sampling when observers noted that birds were actively for-
aging. We, therefore, feel that our interpretation of the 2 states
was accurate in describing the general behaviors of red-cockaded
woodpecker groups, even though the resting state likely includes
a small amount of loraging behavior. Further, the classifications
are intuitively appealing after considering their associations with
habitat features known to be important in habitat selection, further
discussed below.

Irrespective of potential minor caveats in the interpretation of
the HMM states, the analysis led to intriguing insights into how
movement metrics and patterns vary across seasons, habitat types,
and territories. In particular, we found that step lengths tended to
be largest in winter, though overall the differences among seasons
were small (Figure 1). Larger step lengths in winter could be due to
higher energetic demands and lower food availability in the season,
requiring woodpeckers to travel farther and faster to obtain food
(McKellar et al. 2013). An alternative is that larger step lengths in
winter reflect the movement of the mixed species foraging flocks
with which red-cockaded woodpeckers travel at this time of year
(Schaefer et al. 2004). Behavioral state dynamics were also influ-
enced by woodpecker group size (Figure 2). Larger groups were
more likely to be in a resting state versus a foraging state. Larger
groups may require more time to rest, especially because juveniles
are often part of large groups. This result might also represent pro-
tection of juveniles, as the birds preferred habitat with better cover
while in the resting state (see below). Alternatively, larger groups
might occur on better territories or be able to locate food more effi-
ciently, such that they required less time in the foraging state. We
are aware of only one previous study that linked social factors to
behavioral states in an HMM framework, in which groups of rein-
deer (R. tarandus) exhibited attraction to the group’s center when in
an “encamped” state (Langrock et al. 2014). Together, the results
highlight the importance of considering the group environment as
it relates to movement in social species.

The inclusion of 4 environmental covariates was found to sub-
stantially increase the likelihood of the fitted model. Interestingly,
the influences of high densities of large pine trees and large hard-
wood trees (i.e., those in the =25.4cm dbh size class) were oppo-
site in direction. Woodpeckers were more likely to be in a foraging
state when in forest stands with more large pine stems/ha and to
be in a resting state when in forest stands with more large hard-
wood stems/ha (Figure 2). Similarly, dwell times for the foraging
state were longer in forest stands with more large pine trees, and

dwell times for the resting state were longer in forest stands with
more large hardwood trees. Forest stands with large pine trees are
generally considered appropriate foraging habitat for red-cockaded
woodpeckers, whereas stands with canopy hardwoods are con-
sidered unsuitable (Walters et al. 2002). Thus, our results suggest
woodpecker groups made use of high-quality habitat for foraging
movements and may have chosen low-quality habitat for resting or
loafing. Lower quality habitats, like those in which birds were in a
resting state, have greater structural complexity and thus may pro-
vide both thermal cover and visual cover from aerial predators (e.g,,
sharp-shinned hawks, Accipiter striatus; Bohall and Collopy 1984).
Our findings with respect to foraging in high-quality habitat sup-
ported the fact that focal sampling periods were associated with the
foraging state, though we lack direct behavioral observation data
for resting birds.

The density of small pine and hardwood trees (i.e., trees in the
10.2-25.4cm dbh size class) also appeared to have similar, but
opposing, effects on woodpecker behavioral states. Specifically,
woodpeckers showed longer dwell times for both behavioral
states in forest stands with more small pine stems/ha and shorter
dwell times for both behavioral states in forest stands with more
small hardwood stems/ha (Figure 2). These results imply fewer
state switches in the former and more state switches in the latter.
Previous work identifying state switches depending on covariates
include a study of gray mouse lemurs (Microcebus murinus) in which
frequency of state switches was related to sex, body mass, and time
of night (Schliche-Diecks et al. 2012) and a study of loggerhead
turtles (Caretta carelta) in the western Mediterranean in which state
dwell time depended on body size (Eckert et al. 2008). Forest stands
containing high densities of small trees are generally considered
low-quality foraging habitat for red-cockaded woodpeckers (Walters
et al. 2002), and so [requent state switches could indicate foraging
inefliciency or avoidance of such habitat. This interpretation can
explain our findings for small hardwood tree densities but leaves us
with a counterintuitive result for small pines. In any case, it 1s clear
that woodpecker movement dynamics can be influenced by envi-
ronmental resources critical to their fitness.

We found that a model including 4 distinct values for the random
effect associated with individual woodpecker territories was pre-
ferred over models not incorporating variation among territories.
This result indicates that differences among woodpecker territories
can produce differences in foraging behavior, in addition to varia-
tion in other factors such as group size. The linding that 4 values
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were preferred over greater or fewer distinct values is an interest-
ing result, which suggests that woodpecker groups displayed about
4 different “types” of movement behavior according to their ter-
ritories. More research would be needed to determine which char-
acteristics of the territory are associated with movement dynamics,
as red-cockaded woodpecker territories can vary substantially in
size and in the relative proportion of good-quality foraging habitat
available (Hooper et al. 1982; Conner et al. 2001; McKellar et al.
2014), factors that would no doubt influence movement behavior.
Importantly, we emphasize that the use of discrete random eflects,
rather than more common continuous random eflects, constitutes
an important and broadly applicable tool for accounting for het-
erogeneity in longitudinal data, which to date has been widely
neglected in the literature on animal movement modeling. In con-
trast, the same idea is routinely used in the capture-recapture lit-
erature (cf. the mixture models of Pledger and Schwarz 2002 and
Pledger et al. 2003).

Advances in animal-mounted tracking technology will soon pro-
vide additional complex, high-resolution, individual behavioral
time series, and development of new analytical tools is crucial to
fully exploit these data sets. We have shown that HMMs can be use-
ful for describing the influence of multiple covariates on movement
while accounting for heterogeneity in a social bird, an approach
that can potentially be applied to a range of species. For example,
the increased deployment of transmitting devices on birds, both
resident and migratory, in combination with improvements in the
quality of remotely sensed habitat data will provide exceptional
opportunities to better understand avian habitat selection, resource
use, and migratory behavior, and our study indicates that HMMs
are a powerful analytical tool for this purpose.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.hbeheco.
oxfordjournals.org/
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